Sains Malaysiana
53(2)(2024): 285-294
http://doi.org/10.17576/jsm-2024-5302-04
Probing the Potential of Water
Chestnut Powder (Trapa bispinosa) in Improving the Shelf Life of
Buttermilk
(Menyelidik Potensi Serbuk
Berangan Air (Trapa bispinosa) dalam
Meningkatkan Jangka Hayat Susu Mentega)
SADIA REHMAN
RAO1, NABILA GULZAR1,*, MUHAMMAD NADEEM1,
SAIMA RAFIQ2, FAKHARA KHANUM5, SHAMAS MURTAZA4 & MUHAMMAD AJMAL3
1Department
of Dairy Technology, University of Veterinary and Animal Sciences, Lahore,
55300, Pakistan
2Department
of Food Science and Technology, University of Poonch, Rawalakot, 12350,
Pakistan
3Food Chemistry Lab, Department of Dairy
Technology, University of Veterinary and Animal
Sciences, Lahore, 55300, Pakistan
4Department of Food Science and Technology, Muhammad Nawaz
Sharif University of Agriculture, Multan
5Department of Human Nutrition and Dietetics, University of
Agriculture, DIKhan
Diserahkan: 11
Januari 2023/Diterima: 20 Januari 2024
Abstract
Buttermilk,
a valuable by-product of butter production, faces challenges in
commercialization due to its limited shelf life and susceptibility to fungal
growth. This study aimed to explore the use of water chestnut powder (WCP) as a
means to extend the shelf life of buttermilk. The investigation involved
evaluating the physicochemical properties, antioxidant activity, antifungal
properties, and stabilizing effects of WCP in buttermilk. Buttermilk samples
were prepared with varying concentrations of WCP (0%, 0.5%, 1%, 1.5%, and 2%)
and stored at 4 °C for one month. The analysis of physicochemical properties
showed that the concentration of WCP had a significant impact on the protein
percentage, ash content, pH, and acidity of the Water Chestnut Buttermilk (WCBM).
Assessment of antioxidant activity using the phosphomolybdenum method showed
that, on the 21st day of storage, WCBM3 and WCBM4 exhibited total antioxidant
capacities of 0.57±0.12 and 0.60±0.32, respectively, compared to the control
with a capacity of 0.48±0.07. The antifungal activity of water chestnut powder
buttermilk was evaluated using a qualitative method, which demonstrated
inhibition of fungal growth. In the control and WCBM1 and WCBM2 treatments, the
observed inhibition ranged from 1-4 mm. However, as the concentration of water
chestnut powder increased in WCBM3 and WCBM4, the level of inhibition also
increased. Textural analysis further indicated the stabilizing effect of WCP on
buttermilk. Overall, the incorporation of WCP in buttermilk yielded promising
results in terms of enhancing its physicochemical properties, antioxidant
activity, antifungal potential, and textural stability. This study highlights
the potential of water chestnut as an ingredient to improve the shelf life and
quality of buttermilk, creating opportunities for its commercial utilization in
the dairy industry.
Keywords: Antifungal;
buttermilk; physicochemical; sensory; water chestnut
Abstrak
Susu
mentega, produk sampingan yang berharga daripada pengeluaran mentega, menghadapi
cabaran dalam pengkomersialan kerana jangka hayatnya yang terhad dan mudah
terdedah kepada pertumbuhan kulat. Penyelidkan ini bertujuan untuk mengkaji
penggunaan serbuk berangan air (WCP) sebagai cara untuk memanjangkan jangka
hayat susu mentega. Kajian melibatkan penilaian sifat fizikokimia, aktiviti
antioksidan, sifat antikulat dan kesan penstabilan WCP dalam susu mentega.
Sampel susu mentega disediakan dengan kepekatan WCP berbeza (0%, 0.5%, 1%, 1.5%
dan 2%) dan disimpan pada suhu 4 °C selama satu bulan. Analisis sifat
fizikokimia mendedahkan bahawa kepekatan WCP mempunyai kesan yang signifikan
terhadap peratusan protein, kandungan abu, pH dan keasidan Air Susu Mentega
Berangan (WCBM). Penilaian aktiviti antioksidan menggunakan kaedah phosphomolybdenum
menunjukkan bahawa, pada hari penyimpanan ke-21, WCBM3 dan WCBM4 menunjukkan
jumlah kapasiti antioksidan masing-masing 0.57±0.12 dan 0.60±0.32, berbanding
kawalan dengan kapasiti 0.48±0.07. Aktiviti antikulat serbuk susu mentega
berangan air dinilai menggunakan kaedah kualitatif, yang menunjukkan perencatan
pertumbuhan kulat. Dalam kawalan dan rawatan WCBM1 dan WCBM2, perencatan yang
diperhatikan adalah antara 1-4 mm. Walau bagaimanapun, apabila kepekatan serbuk
berangan air meningkat dalam WCBM3 dan WCBM4, tahap perencatan juga meningkat.
Analisis tekstur seterusnya menunjukkan kesan penstabilan WCP pada susu
mentega. Secara keseluruhannya, penggabungan WCP dalam susu mentega membuahkan
hasil yang memberangsangkan daripada segi peningkatan sifat fizikokimia, aktiviti
antioksidan, potensi antikulat dan kestabilan tekstur. Kajian ini menyerlahkan
potensi berangan air sebagai ramuan untuk meningkatkan jangka hayat dan kualiti
susu mentega, mewujudkan peluang untuk penggunaan komersialnya dalam industri tenusu.
Kata
kunci: Antikulat; berangan air; deria; fizikokimia; susu mentega
RUJUKAN
Alfasane, M.A., Khondker, M. & Rahman, M.M.
2011. Biochemical composition of the fruits of water chestnut (Trapa
bispinosa Roxb.). Dhaka
University Journal of Biological Sciences 20(1): 95-98. doi.org/10.3329/dujbs.v20i1.8879
Alsaleem, K.A. 2019. Using isoconversional methods
to study the effect of antioxidants on the oxidation kinetics of milk fat.
South Dakota State University. MSc. Thesis (Unpublished) https://openprairie.sdstate.edu/etd/3405
Association of Official Analytical Chemists (AOAC). 2019. International Official Methods of
Analysis, 21st ed. AOAC International Maryland, USA.
Association of Official Analytical Chemists (AOAC). 2016. Official Methods of
Analysis of AOAC International. Rockville MD: AOAC Int.
AOCS. 1989. Official Methods and Recommended
Practices of the American Oil Chemists’ Society. 4th ed. American Oil
Chemists’ Society, Champaign.
Banjara, N., Suhr, M.J. & Hallen-Adams, H.E.
2015. Diversity of yeast and mold species from a variety of cheese types. Current
Microbiology 70: 792-800. doi.org/10.1007/s00284-015-0790-1
Barukčić, I., Jakopović, K.L. &
Božanić, R. 2019. Whey and buttermilk - Neglected sources of valuable
beverages. In Nat. Beverages, edited by Grumezescu, A.M. & Holban,
A.M. Massachusetts: Academic Press. pp. 209-242.
Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong,
Y., Tian, C., Gao, S., Dong, H., Guan, D. & Hu, X. 2010. Identification and
characterization of microRNAs in raw milk during different periods of
lactation, commercial fluid, and powdered milk products. Cell Research 20(10): 1128-1137. doi: 10.1038/cr.2010.80
Consumi, M., Tamasi, G., Pepi, S., Leone, G.,
Bonechi, C., Magnani, A., Donati, A. & Rossi, C. 2022. Analytical
composition of flours through thermogravimetric and rheological combined
methods. Thermochimica Acta 711: 179204. doi.org/10.1016/j.tca.2022.179204
Dopazo, V., Luz, C., Calpe, J., Vila‐Donat,
P., Rodriguez, L. & Meca, G. 2022. Antifungal properties of whey fermented
by lactic acid bacteria in films for the preservation of cheese slices. International
Journal of Dairy Technology 75(3): 619-629. doi.org/10.1111/1471-0307.12847
Dudkiewicz, A., Hayes, W. & Onarinde, B. 2022.
Sensory quality and shelf-life of locally produced British butters compared to
large-scale, industrially produced butters. British Food Journal 124(10): 3220-3235. doi.org/10.1108/BFJ-02-2021-0172
Echegaray, N., Munekata, P.E., Centeno, J.A.,
Domínguez, R., Pateiro, M., Carballo, J. & Lorenzo, J.M. 2020. Total phenol
content and antioxidant activity of different celta pig carcass locations as
affected by the finishing diet (chestnuts or commercial feed). Antioxidants 10(1): 5. doi: 10.3390/antiox10010005
Ewe, J.A. & Loo, S.Y. 2016. Effect of cream
fermentation on microbiological, physicochemical and rheological properties of L.
helveticus-butter. Food Chemistry 201: 29-36. doi: 10.1016/j.foodchem.2016.01.049
Gebreselassie, N., Abrahamsen, R.K., Beyene, F.,
Abay, F. & Narvhus, J.A. 2016. Chemical composition of naturally fermented
buttermilk. International Journal Dairy Technology 69(2): 200-208. doi.org/10.1111/1471-0307.12236
Ghanshyambhai, M.R., Balakrishnan, S. &
Aparnathi, K.D. 2015. Standardization of the method for utilization of paneer
whey in cultured buttermilk. Journal of Food Science and Technology 52:
2788-2796. doi: 10.1007/s13197-014-1301-2
Hati, S., Das, S. & Mandal, S. 2019.
Technological advancement of functional fermented dairy beverages. In Engineering
Tools in the Beverage Industry, edited by Grumezescu, A.M. & Holban,
A.M. Woodhead Publishing. pp. 101-136.
doi.org/10.1016/B978-0-12-815258-4.00004-4
Huis, in't Veld J.H. 1996. Microbial and biochemical
spoilage of foods: An overview. International Journal of Food Microbiology 33(1): 1-8. https://doi.org/10.1016/0168-1605(96)01139-7
Hymery, N., Vasseur, V., Coton, M., Mounier, J.,
Jany, J.L., Barbier, G. & Coton, E. 2014. Filamentous fungi and mycotoxins
in cheese: A review. Comprehensive Review Food Science Food Safety 13:
437-456. doi: 10.1111/1541-4337.12069
Latoch, A., Libera, J. &
Stasiak, D.M. 2019. Physicochemical properties of pork loin marinated in Kefir,
yoghurt or buttermilk and cooked sous vide. Acta
Scientiarum Polonorum Technologia Alimentaria 18:
163-171. doi: 10.17306/J.AFS.0642
Ledenbach, L.H. & Marshall, R.T. 2009.
Microbiological spoilage of dairy products. In Compendium of the
Microbiological Spoilage of Foods and Beverages, edited by Sperber, W.
& Doyle, M. Food Microbiology and Food Safety. New York: Springer. DOI:10.1007/978-1-4419-0826-1_2
Libudzisz, Z. & Stepaniak, L.
2011. Fermented milks | buttermilk. Encyclopedia
of Dairy Sciences. 2nd ed. Massachusetts: Academic Press. pp. 489-495. DOI:10.1016/B978-0-12-374407-4.00183-7
Lutfi, Z., Nawab, A., Alam, F. & Hasnain, A.
2017. Morphological, physicochemical, and pasting properties of modified water
chestnut (Trapabispinosa) starch. International Journal Food
Properties 20(5): 1016-1028. doi.org/10.1080/10942912.2016.1193514
Mandal,
S.M., Migliolo, L., Franco, O.L. & Ghosh, A.K. 2011.
Identification of an antifungal peptide from Trapa natans fruits with
inhibitory effects on Candida tropicalis biofilm formation. Peptides 32(8): 1741-1747. doi: 10.1016/j.peptides.2011.06.020
Martínez, S., Fuentes, C. & Carballo, J. 2022.
Antioxidant activity, total phenolic content and total flavonoid content in
sweet chestnut (Castanea sativa Mill.) cultivars grown in Northwest
Spain under different environmental conditions. Foods 11(21): 3519. doi.org/10.3390/foods11213519
Meilgaard, M.C., Civille, G.V. & Carr, B.T.
2007. Sensory Evaluation Techniques. 4th ed. Boca Raton: CRC Press. doi.org/10.1201/b16452
Morin, P., Pouliot, Y. & Britten, M. 2008. Effect of buttermilk made from
creams with different heat treatment histories on properties of rennet gels and
model cheeses. Journal of Dairy Science 91(3): 871-882.doi.org/10.3168/jds.2007-0658
Nabasree, D. & Bratati, D. 2007. Antioxidant
activity of Azadirachta indica A. Juss. (neem) leaf. Phytoche and
Pharma III: 449-457.
Narvhus, J.A. & Abrahamsen, R.K. 2023.
Traditional and modern Nordic fermented milk products: A review. International
Dairy Journal 15: 105641. doi.org/10.1016/j.idairyj.2023.105641
Peng, L.
& Jiang, Y.
2004. Effects of heat treatment on quality of fresh-cut Chinese water chestnut. International Journal Food
Science and Technology 39(2): 143-148. DOI:10.1046/j.0950-5423.2003.
00767.x
Pitt, J.I. & Hocking, A.D. 2009. Fungi and
Food Spoilage. New York: Springer. doi.org/10.1007/978-0-387-92207-2
Quasem, J.M., Mazahreh, A.S., Afaneh, I.A. &
Omari, A. 2009. Solubility of solar dried jameed. Pakistan Journal Nutrition 8(2): 134-138. DOI: 10.3923/pjn.2009.134.138
Razvy, M.A., Kabir, A.H. & Hoque, M.A. 2011.
Antifungal activity of fruit extracts of different water chestnut varieties. Notulae
Scientia Biologicae 3(1): 61-64. doi.org/10.15835/nsb315596
Romani, A., Simone, G., Campo, M., Moncini, L. &
Bernini, R. 2021. Sweet chestnut standardized fractions from sustainable
circular process and green tea extract: In vitro inhibitory activity
against phytopathogenic fungi for innovative applications in green agriculture. PLoS ONE 16(2. doi.org/10.1371/journal.pone.0247298
Shafi, S., Wani, I.A., Gani, A., Sharma, P., Wani,
H.M., Masoodi, F.A., Khan, A.A. & Hamdani, A.M. 2016. Effect of water and
ether extraction on functional and antioxidant properties of Indian horse
chestnut (Aesculus indica Colebr) flour. Journal Food Measured and
Characteristic 10(2): 387-395. DOI: 10.1007/s11694-016-9317-0
Steel, R.G.D., Torrie, J.H. &
Dicky, D.A. 1997. Principles and Procedures of Statistics: A Biometrical
Approach. 3rd ed. New York: McGraw Hill. pp. 352-358.
Tesch, S. & Schubert, H. 2002. Influence of increasing viscosity of the
aqueous phase on the short-term stability of protein stabilized emulsions. Food Engineering 52(3):
305-312. DOI:10.1016/S0260-8774(01)00120-0
Xu,
Z., Meenu, M., Chen, P. & Xu, B. 2020. Comparative study on phytochemical
profiles and antioxidant capacities of chestnuts produced in different
geographic area in China. Antioxidants 9(3): 190.
You, Y., Duan, X., Wei, X., Su, X., Zhao, M., Sun,
J., Ruenroengklin, N. & Jiang, Y. 2007. Identification of major phenolic
compounds of Chinese water chestnut and their antioxidant activity. Molecules 12(4): 842-852. doi: 10.3390/12040842
Yu, L., Nanguet, A.L. & Beta,
T. 2013. Comparison of antioxidant properties of refined and whole wheat flour
and bread. Antioxidants 2: 370-383. doi: 10.3390/antiox2040370
Zhan, G., Pan, L., Tu, K. & Jiao, S. 2016.
Antitumor, antioxidant, and nitrite scavenging effects of Chinese water chestnut
(Eleocharis dulcis) peel flavonoids. Journal of Food Science 81(10): H2578-H2586. doi:
10.1111/1750-3841.13434
Zhang, J., Jiang, H., Du, Y., Keyhani, N.O., Xia, Y.
& Jin, K. 2019. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and
virulence. PLoS Pathogens 15(8): e1007964. https://doi.org/10.1371/journal.ppat.1007964
*Pengarang untuk
surat-menyurat; email: nabila.gulzar@uvas.edu.pk
|